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ABSTRACT
In this paper, we propose a novel knowledge distillation

framework to improve the efficiency of deep networks for

video deraining. The knowledge is transferred from a large-

scale powerful teacher network to a compact efficient student

network via the proposed collaborative spatial-temporal dis-

tillation framework. The framework is equipped with three

collaboration schemes of different granularities that make use

of spatial-temporal redundancy in a complementary way for

better distillation performance. First, the spatial alignment

module applies distillation constraints at different spatial

scales to achieve better scale invariance in transferred knowl-

edge. Second, the temporal alignment module traces both

temporal status between teacher and student separately and

collaboratively, to comprehensively utilize inter-frame infor-

mation. Third, these two alignment modules interact through

a spatial-temporal adaptor, where spatial-temporal knowl-

edge is transferred in a unified framework. Extensive exper-

iments demonstrate the superiority of our distillation frame-

work as well as the effectiveness of each module. Our code

is available at: https://github.com/HuYuzhang/Knowledge-

Distillation.

Index Terms— Video Deraining, Knowledge Distil-

lation, Spatial Alignment, Temporal Alignment, Spatial-

Temporal Adaptor

1. INTRODUCTION

As one of the most commonly seen adverse weather, rain

can cause a series of visual degradation. Specifically, rain

streaks change pixel intensities and fluctuate illumination

severely, which leads to occlusions and blurriness of back-

ground scenes. What is more, these kinds of degradation

might also lead to the failure of many outdoor vision applica-

tions like auto driving. As a result, video deraining has drawn

great research attention in recent years.
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Science Foundation of China under Contract No.62172020, and a research

achievement of Key Laboratory of Science, Techonology and Standard in
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Project of PCL and the Major Key Project of PCL.

This problem is firstly explored by Garg and Nayar [1].

The following methods [2, 3] design more complex priors to

reconstruct the clean frames. After stepping into the deep

learning era, a series of end-to-end trainable deep learning-

based approaches [4, 5, 6] are proposed. Most existing video

deraining methods take the sliding-window way to make use

of the temporal information. That is to say, to remove the

rain in the t-th frame, the temporally adjacent frames are also

fed into the network to reconstruct the clean t-th frame. The

size of the sliding-window is the number of input frames. To

improve the deraining performance of a video deraining net-

work, there are two main branches of methods. First, the

size of the sliding-window keeps growing because it is rea-

sonable that a larger sliding-window can contain more tem-

poral information in a larger temporal receptive field. Sec-

ond, the parameter number keeps increasing, which can also

equip the model with a stronger capacity. Although signifi-

cant improvement has been achieved, these two classes lead to

larger models and more computational costs. However, such

drawbacks lead to significant performance bottlenecks during

practical deployment, particularly in some real-time applica-

tion scenarios. As a result, it is of great significance to build

efficient video deraining networks for practical applications.

Knowledge distillation [7, 8] provides a feasible direction

to address the issue. It is first proposed in [7] to transfer the

knowledge from a powerful large network (teacher network)

to a smaller network (student network). Compared with the

supervision only under the ground truth labels, the interme-

diate feature of the teacher network also contains a wealth of

useful information, which can guide the student network to

also enrich its intermediate feature to achieve better perfor-

mance. For simplicity, we denote the teacher network and

student network as Teacher and Student, respectively. Re-

cently, there are some explorations of knowledge distillation

in low-level visions. In [9], it is first explored to distill a single

image super-resolution network with a more powerful one.

In [10], the affinity matrix is integrated into the distillation

loss to model the spatial correlation of the intermediate fea-

ture. In [11], the temporal distillation is introduced to exploit

the inter-frame correlation for video super-resolution. Bet-

ter performance is achieved compared with pure spatial dis-

tillation. However, it only performs plain feature alignment,
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which is not effective in utilizing the rich information of the

intermediate feature. Besides, the spatial and temporal distil-

lation are applied independently, and the cross-domain corre-

lation is ignored. What is more, the distillation for video de-

raining has not been explored. The above distillation frame-

works might be not optimal for this problem due to the intrin-

sic gap between super-resolution and video deraining.

In this paper, we propose a novel distillation framework

consisting of two alignment modules to construct multiple

collaboration schemes to address the above-mentioned issues.

First, we propose a spatial alignment module, which takes

the feature of different scales to construct the distillation loss

to make the Student better at handling rain streaks of differ-

ent scales. Different scales interact to collaboratively utilize

both local and global information. Second, we propose a tem-

poral alignment module to trace two kinds of temporal sta-

tus of a rainy video. The features of Teacher and Student

are aggregated both separately and collaboratively to com-

prehensively utilize inter-frame redundancy. Last, the spa-

tial and temporal alignment modules mutually benefit through

a Spatial-Temporal Adaptor. Specifically, except for trans-

ferring knowledge during the distillation process, the spa-

tial/temporal alignment module will also output auxiliary in-

formation to assist the temporal/spatial alignment module al-

ternately, to propagate the spatial-temporal information inter-

actively. Our contributions are summarized as follows:

• We propose a Spatial Alignment Module with multiple

scales to achieve better scale invariance in transferred

knowledge and facilitate the student network to handle

diverse kinds of rain streaks.

• We propose a Temporal Alignment Module with con-

straints on the temporal status of Student and Teacher

separately and collaboratively, to guide the student net-

work for more comprehensive temporal modeling.

• To further improve the distillation efficiency, a Spatial-

Temporal Adaptor is proposed to make these two mod-

ules collaborate with cross-domain redundancy.

2. COLLABORATIVE SPATIAL-TEMPORAL
DISTILLATION

Formulation. Denoting It as the t-th time-step rainy frame, a

vanilla video deraining model takes consecutive rainy frames

as inputs to predict the t-th time-step clean frame. Usually, It
is the middle one of these input frames. The total number of

input frames is denoted as 2k+1, where k controls the size of

the sliding window. To begin with, we decompose a video de-

raining network into two parts. The first one is the backbone

module, where the input frames are mapped to the feature

space. The second one is the reconstruction module, where

the intermediate feature is mapped back to the image space

to obtain the final deraining result. We use F̂T,t and F̂S,t to

denote the intermediate features of the Teacher and the Stu-

dent to recover the clean t-th frame, respectively. Following

[9], the intermediate feature is aggregated to a single-channel

one, which is denoted as FT/S,t, namely FT,t or FS,t. The

following distillation loss is constructed on FT/S,t.

Framework Overview. Our distillation framework consists

of three modules, including the Spatial Alignment Module,

the Temporal Alignment Module, and the Spatial-Temporal

Adaptor as Fig. 1 (a) shows. The first two modules trans-

fer the knowledge of the Teacher to the Student in the spatial

domain and the temporal domain, respectively. The Spatial-

Temporal Adaptor plays the role to exchange information be-

tween the first two modules in the distillation process. Specif-

ically, the distillation process is performed recurrently across

frames. For the t-th frame, the feature of the Teacher and

Student FT/S,t is first fed to the Spatial Alignment Module

to calculate the spatial distillation loss and obtain the spatial

hint, which is the aggregated knowledge in the spatial domain.

Then, the spatial hint is forwarded to the Temporal Alignment

Module, which helps calculate the temporal distillation loss

with FT/S,t and the previous temporal status ht−1. Besides,

the temporal hint is obtained, which is similarly the aggre-

gated knowledge in the temporal domain and is forwarded

to the Spatial Alignment Module for the distillation of the

next time-step. This process is repeated progressively until

all frames of a rainy video are processed. The detailed design

of each module is described in the following sections.

2.1. Spatial Alignment Module

This module transfers the knowledge from Teacher to Stu-

dent by the feature of a single frame as shown in Fig. 1 (b).

Considering the various directions, densities, and sizes of rain

streaks, the original feature is down-sampled to 3 different

scales to improve the invariance of the features distorted by

different kinds of rain streaks. F p
T/S,t stands for the feature of

the t-th time-step frame at the p-th scale. Here p ∈ {1, 2, 3},
corresponding to the original scale, the 1/2 scale, and the 1/4

scale, respectively. This module only involves the feature of

the current t-th time-step frame, so we denote F p
T/S,t as F p

T/S
for simplicity.

Rain streaks and background information are correlated

among different scales, respectively, where this complemen-

tary information can benefit the distillation process For exam-

ple, some rain streaks are of similar shape and direction across

different scales. As a result, cross-scale collaboration can also

contribute to more accurate rain removal. To this end, we

connect the distillation process of different scales with a Con-

nector for better utilization of cross-scale spatial information.

The Connector merges the features at adjacent scales, and the

spatial distillation loss is imposed on the merged feature. The

Connector consists of the Local to Global (L2G) and Global

to Local (G2L) connection passes. In the L2G connection

pass, the input feature of a smaller scale is merged with the

previously merged one of a larger-scale as follows:

Cp,L2G
T/S = fθ

(
F p
T/S , C

p−1,L2G
T/S

)
, (1)
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Fig. 1. The overall pipeline and module structure of our Collaborative Spatial-Temporal Distillation framework.

where Cp,L2G
T/S is the merged feature at the p-th scale in the

L2G pass and fθ(·) denotes the connector. Similarly, in the

G2L pass, the input feature of a larger scale is merged with

the previously merged one of a smaller-scale as follows:

Cp,G2L
T/S = fθ

(
F p
T/S , C

p+1,G2L
T/S

)
. (2)

The overall spatial distillation loss is the summation of the

absolute difference between the merged features of Teacher

and Student at different scales as follows:

LSpatial =

3∑
p=1

∑
d∈{L2G,G2L}

∣∣∣Cp,d
T − Cp,d

S

∣∣∣. (3)

2.2. Temporal Alignment Module

Temporal consistency and redundancy are critical for video

modeling and provide useful guidance for video deraining.

To make Student inherit the temporal modeling capacity from

Teacher, we propose a Temporal Alignment Module. It con-

sists of both the separate alignment and the collaborative

alignment as shown in Fig. 1 (c). The key component, Aggre-

gator, traces the temporal status of a rainy video. It progres-

sively takes the feature of t-th frame as input to update the

temporal status of the rainy video, which is used to calculate

the temporal distillation loss. At the same time, the internal

status of the Aggregator is also updated and propagated to the

aggregation process of the next frame.

In the proposed Temporal Alignment Module, there are

two kinds of temporal status. First, it traces the separate tem-

poral status of Teacher and Student as follows:

(
CT/S,t, hT/S,t

)
= fγ

(
FT/S,t, hT/S,t−1

)
, (4)

where fγ(·) stands for the Aggregator. Two internal status,

denoted as hT,t and hS,t, are maintained for the Teacher and

the Student, respectively. CT/S,t is the separate temporal sta-

tus of the rainy video in the current time step.

Second, the collaborative temporal status is traced as fol-

lows:

(CM,t, hM,t) = fγ (FS,t, hT,t−1) , (5)

where CM,t is the collaborative temporal status of the rainy

video in the current time step. Different with Eqn. (4), Stu-

dent provides the input feature while Teacher provides the in-

ternal status of the Aggregator to calculate the collaborative

temporal status. In the temporal distillation process, we con-

strain CM,t to be close to CT,t. This design facilitates the

joint optimization by enrolling the mixed aggregation inputs,

which drives the Student feature FS,t to imitate the behavious

of the Teacher feature FT,t in temporal modeling.

Finally, the overall temporal distillation loss is imposed

on the traced temporal status as follows:

LTemporal =
L∑

t=1

(|CT,t − CS,t|+ |CT,t − CM,t|) , (6)

where L is the frame number in a video training clip, which

is set to 5 in our implementation.

2.3. Spatial-Temporal Adaptor

The above-mentioned distillation schemes can well capture

both the spatial and temporal characteristics of a video. How-

ever, up to now, these two modules still work separately. The

correlation between the temporal domain and the spatial do-

main has not been fully exploited. We propose a Spatial-

Temporal Adaptor to enable the information sharing between

1939
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Table 1. Performance Improvement with our distillation framework on the NTURain dataset. � denotes the performance before

the distillation. ⊕ denotes the performance after the distillation.

Clip No. a1 a2 a3 a4 b1 b2 b3 b4 average ΔPSNR ΔSSIM

Teacher
PSNR 37.60 34.94 36.58 40.86 38.25 38.90 40.07 38.33 38.19

— —SSIM 0.9786 0.9734 0.9734 0.9853 0.9762 0.9742 0.9824 0.9761 0.9775

Student#1� PSNR 35.49 31.28 34.49 37.63 35.92 34.67 36.93 34.96 35.17

1.53 ↑ 0.0047 ↑
SSIM 0.9723 0.9611 0.9651 0.9787 0.9704 0.9589 0.9741 0.9681 0.9686

Student#1⊕ PSNR 36.81 33.33 35.63 39.40 37.19 36.18 38.72 36.33 36.70

SSIM 0.9757 0.9686 0.9689 0.9829 0.9739 0.9645 0.9791 0.9726 0.9733

Student#2� PSNR 35.35 31.91 34.36 37.78 35.80 34.60 36.73 35.01 35.19

0.95 ↑ 0.0034 ↑
SSIM 0.9721 0.9626 0.9644 0.9789 0.9699 0.9563 0.9739 0.9677 0.9682

Student#2⊕ PSNR 36.50 31.99 35.44 38.24 36.71 36.02 38.02 36.22 36.14

SSIM 0.9748 0.9645 0.9683 0.9816 0.9729 0.9607 0.9783 0.9722 0.9717

Student#3� PSNR 28.78 25.71 28.93 30.47 31.21 27.41 26.29 28.80 28.45

3.23 ↑ 0.0073 ↑
SSIM 0.9442 0.9201 0.9305 0.9561 0.9522 0.9511 0.9468 0.9414 0.9428

Student#3⊕ PSNR 31.18 27.07 30.51 32.46 32.76 33.86 33.08 32.54 31.68

SSIM 0.9520 0.9305 0.9358 0.9618 0.9556 0.9600 0.9597 0.9455 0.9501

these two modules. First, the merged feature C1,G2L
T/S in

Eqn. (2) is collected as the spatial hint, which is concate-

nated with the internal status of the Aggregator in the Tem-

poral Alignment Module to obtain the temporal status of the

rainy video. Second, the updated internal status of the Ag-

gregator ht
T/S is viewed as the temporal hint to calculate the

merged feature at the 1-st scale. Formally, the temporal hint

plays the role of Cp−1,L2G
T/S in Eqn. (1). More implementation

details of the Spatial-Temporal Adaptor are provided in the

supplementary material.

2.4. Overall Loss Function

The distillation losses on the intermediate feature in previous

sections play the role in transferring the knowledge from the

Teacher to the Student. Besides, the intermediate feature is

also fed into the subsequent convolution layer to obtain the

deraining result. The reconstruction loss is calculated be-

tween the deraining result and the ground truth as follows:

LRecon =

3∑
p=1

λpSSIM(Îpt , I
p
t ), (7)

where Îpt denotes the t-th deraining frame of the p-th scale

and Ipt is the corresponding ground truth. SSIM(·) stands

for the Structural Similarity Index Measure [12] metric. λp

is the weight to balance the importance of different terms. In

our implementation, λ1, λ2, and λ3 are set to 0.6, 0.2, and

0.2, respectively.

The Student is trained with the total loss as follows:

Ltotal = LRecon + αLSpatial + βLTemporal, (8)

where α and β are the weights to balance three items, which

are both set to 0.1 in our implementation.

Table 2. Configuration of the networks in the distillation ex-

periment.

Network Teacher Student#1 Student#2 Student#3

#input frames 7 3 3 1

#channel 64 16 16 32

#network depth 22 22 13 22

#parameter 2.02M 136K 81K 186K

#FLOPs 127.60G 5.76G 2.81G 3.06G

3. EXPERIMENT

3.1. Implementation Details

Network Structure. We use the fully-supervised version of

SLDNet [13] as our Teacher. The EHNet for detail compensa-

tion in the original SLDNet is removed and we only retain the

PredNet for deraining, which consists of cascaded 3D con-

volution layers. It takes 7 successive rainy frames as input

and the channel number of the intermediate feature is set to

64, leading to more than two million parameters. We build

multiple lightweight Students by modifying the size of the

sliding window, the channel number of the intermediate fea-

ture and the network depths. The detailed configurations of

the Teacher and Students are shown in Tab. 2.

Dataset. We choose the NTURain dataset [4] for train-

ing and testing. The training set contains 24 synthetic rainy

videos and the corresponding ground truth. The testing set

contains 8 synthetic rainy videos and 7 real rainy videos. We

use the training set to train our network in the training stages.

Training Details. There are two training stages, includ-

ing the pre-training stage and the distillation stage. We first

pre-train both the Teacher and Students without the distilla-

tion losses. In the second stage, the pre-trained Students are

distilled with guidance from the pre-trained Teacher. After

finishing the training, the distilled Student is evaluated solely
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Fig. 2. Visualization of the intermediate feature. It can be ob-

served that the intermediate feature after the distillation owns

richer information to facilitate the subsequent reconstruction

of the clean image.

without the enrollment of the Teacher. More training details

are provided in the supplementary materials.

3.2. Quantitative Evaluation

Tab. 1 shows the results of our distillation framework. It can

be observed that significant improvement can be achieved for

Students with different scales, which proves the generality of

our framework. Specifically, an improvement of more than

2dB is obtained for Student#1 in the a2 video.

Our Student network is not only lightweight to be more

practical for real applications but also achieves satisfactory

deraining performance after the distillation. To prove it, we

compare the distilled Student#1 with some existing deraining

methods in Tab. 3. We also provided the visual comparison in

Fig. 3. PReNet [14] is a single image deraining method. For a

fair comparison, we re-train it with the NTURain dataset un-

der the same training setting. It mistakenly removes the back-

ground contents that are not rain streaks as Fig. 3 (b) shows.

SpacCNN [4] is a video deraining method, equipped with a

super-pixel segmentation-based alignment scheme according

to the background context. On the contrary, S2VD [5] explic-

itly models the rain layers of different frames with a statistical

model. Better performance is obtained with these two meth-

ods qualitatively. While there is also a significant increase in

the parameter number and some visual artifacts are also intro-

duced in their results as Fig. 3 (c-d) shows. Compared with

these methods, our distilled Student network achieves the best

visual results with the smallest number of parameters.

3.3. Feature Map Visualization

We also visualize the feature map of the Student in Fig. 2. It

can be observed that before distillation, the rain patterns are of

blurred shape, which means that the rain can not be accurately

distinguished from the background. On the contrary, the rain

Table 3. Comparisons with Existing De-raining Methods in

PSNR and SSIM. The best and second best results are high-

lighted in red and blue, respectively.

Clip No.
Network PReNet SpacCNN S2VD Student#1

#parameter 169K 477K 525K 136K

1
PSNR 31.40 30.57 36.39 36.81

SSIM 0.9505 0.9334 0.9658 0.9757

2
PSNR 28.58 31.29 33.06 33.33

SSIM 0.9291 0.9356 0.9519 0.9686

3
PSNR 30.57 30.63 35.75 35.63

SSIM 0.9375 0.9247 0.9564 0.9689

4
PSNR 33.62 35.30 39.53 39.40

SSIM 0.9658 0.9620 0.9779 0.9829

average
PSNR 31.04 31.95 36.18 36.29

SSIM 0.9457 0.9389 0.9630 0.9740

patterns can be well distinguished in the feature map of the

distilled network.

3.4. Comparison with Existing Distillation methods

We compare our distillation framework with two distilla-

tion methods for low-level vision. SRKD [9] is a distilla-

tion method to distill image super-resolution networks. This

method only aligns the spatial feature of each image and the

temporal correlation is not taken into consideration. STD [11]

proposes to use both the spatial and temporal guidance of

Teacher to distill video super-resolution networks, while the

guidance of the spatial domain and temporal domain is inde-

pendent. We re-implement these two methods and use them

to distill the Student#1. Tab. 4 shows the comparison result. It

can be observed that our distillation method brings in the most

performance improvement with our well-designed modules.

Table 4. De-raining Results on the NTURain Testing Set with

Different Distillation Methods.
Distillation Method PSNR SSIM

Baseline 35.17 0.9686

SRKD [9] 35.58 0.9709

STD [11] 35.74 0.9710

Ours 36.70 0.9733

3.5. Ablation Studies

We study the impact of proposed modules on performance to

verify their effectiveness. All ablation studies are performed

on Student#1 on the testing set of NTURain. Tab. 5 shows the

ablation results. The corresponding proposed module of the

abbreviation in the table is shown below:

•MS: Multi-Scale Spatial Distillation.

• CSC: Cross-Scale Connection.

• ITA: Independent Temporal Alignment.

• CTA: Collaborative Temporal Alignment.

• STA: Spatial-Temporal Adaptor.

1941

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on August 29,2023 at 06:33:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Visual comparison among different deraining methods. Compared with our distilled network, the deraining results of

other methods contain more remaining rain streaks as shown in the first line and obvious artifacts as shown in the second line.

Table 5. Ablation Results of the Proposed Modules.

Setting No. MS CSC ITA CTA STA PSNR SSIM

1 � 35.85 0.9706

2 � � 36.23 0.9724

3 � 35.63 0.9710

4 � 35.80 0.9707

5 � � 35.63 0.9712

6 � � � � 36.21 0.9720

7 � � � � � 36.70 0.9733

Setting 1-2 and 3-5 analyze the Spatial Alignment Module

and the Temporal Alignment Module, respectively. In Set-

ting 6, these two modules are combined while the Spatial-

Temporal Adaptor is removed. A performance drop can be

observed due to the lack of cross-domain information. The

final distillation framework, which is equipped with all pro-

posed modules, achieves the best performance as Setting 7

shows.

4. CONCLUSION

In this paper, we propose a Collaborative Spatial-Temporal

Distillation framework to construct lightweight and efficient

video deraining networks. Both the spatial and temporal

knowledge are efficiently transferred with the proposed align-

ment modules. Multiple collaboration schemes of different

granularities lead to better distillation results. Experimental

results not only prove the performance improvement with our

proposed distillation framework but also show the efficiency

of the distilled networks compared with existing video derain-

ing methods.

5. REFERENCES

[1] Kshitiz Garg and Shree K Nayar, “Detection and re-

moval of rain from videos,” in CVPR, 2004.

[2] Tai-Xiang Jiang, Ting-Zhu Huang, Xi-Le Zhao, Liang-

Jian Deng, and Yao Wang, “A novel tensor-based video

rain streaks removal approach via utilizing discrimina-

tively intrinsic priors,” in CVPR, 2017.

[3] Yi-Lei Chen and Chiou-Ting Hsu, “A generalized low-

rank appearance model for spatio-temporally correlated

rain streaks,” in ICCV, 2013.

[4] Jie Chen, Cheen-Hau Tan, Junhui Hou, Lap-Pui Chau,

and He Li, “Robust video content alignment and com-

pensation for rain removal in a CNN framework,” in

CVPR, 2018.

[5] Zongsheng Yue, Jianwen Xie, Qian Zhao, and Deyu

Meng, “Semi-supervised video deraining with dynami-

cal rain generator,” in CVPR, 2021.

[6] Jiaying Liu, Wenhan Yang, Shuai Yang, and Zongming

Guo, “D3R-Net: Dynamic routing residue recurrent net-

work for video rain removal,” IEEE Trans. on Image

Processing, vol. 28, no. 2, pp. 699–712, 2018.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-

ing the knowledge in a neural network,” arXiv preprint

arXiv:1503.02531, 2015.

[8] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim,

“A gift from knowledge distillation: Fast optimization,

network minimization and transfer learning,” in CVPR,

2017.

[9] Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong, “Im-

age super-resolution using knowledge distillation,” in

ACCV, 2018.

[10] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao

Xia, “FAKD: Feature-affinity based knowledge distilla-

tion for efficient image super-resolution,” in ICIP, 2020.

[11] Zeyu Xiao, Xueyang Fu, Jie Huang, Zhen Cheng, and

Zhiwei Xiong, “Space-time distillation for video super-

resolution,” in CVPR, 2021.

[12] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and

Eero P. Simoncelli, “Image quality assessment: from

error visibility to structural similarity,” IEEE TIP, vol.

13, no. 4, pp. 600–612, 2004.

[13] Wenhan Yang, Robby T. Tan, Shiqi Wang, and Jiaying

Liu, “Self-learning video rain streak removal: When

cyclic consistency meets temporal correspondence,” in

CVPR, 2020.

[14] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei

Zhu, and Deyu Meng, “Progressive image deraining net-

works: A better and simpler baseline,” in CVPR, 2019.

1942

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on August 29,2023 at 06:33:46 UTC from IEEE Xplore.  Restrictions apply. 


